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Abstract. In this paper, we survey recent work on ternary Diophantine equa-

tions of the shape Axn + Byn = Czm for m ∈ {2, 3, n} where n ≥ 5 is prime.
Our goal is to provide a simple procedure which, given A, B, C and m, enables

us to decide whether techniques based on the theory of Galois representations

and modular forms suffice to ensure that corresponding ternary equations lack
nontrivial solutions in integers x, y, z and prime n ≥ 5.

1. Introduction

Inspired by the work of Wiles [19] and, subsequently, Breuil, Conrad, Diamond
and Taylor [3], there has been a great deal of research focussing on ternary Diophan-
tine equations from the perspective of (modular) elliptic curves and related Galois
representations and modular forms (see e.g. [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [17]). These have, for the most part been concerned with equations of
the shape

Axp + Byq = Czr

for p, q and r positive integers with 1/p + 1/q + 1/r < 1. We refer to the triple
(p, q, r) as the signature of the corresponding equation. In this paper, we will
provide “recipes” for solving such equations under very special conditions, in case

(p, q, r) = (n, n, 2), (n, n, 3), (n, n, n).

where n ≥ 5 is prime. This, primarily, catalogues prior work of Darmon [5], Darmon
and Merel [8], the author and Skinner [1], the author, Vatsal and Yazdani [2], and
of Kraus [13].

2. Assumptions

In the sequel, we will always assume that n ≥ 5 is prime and that a, b, c, A,B and
C are nonzero integers with aA, bB and cC pairwise coprime, ab 6= ±1, satisfying

(1) Aan + Bbn = Ccm with m ∈ {2, 3, n}.

For future use, we will define, for a given prime q and nonzero integer x,

Radq(x) =
∏

p|x,p6=q

p

where the product is over p prime, and write ordq(x) for the largest nonegative
integer k such that qk divides x.
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2.1. Signature (n, n, 2). In case m = 2, we will assume further that n ≥ 7 and,
without loss of generality, that aA is odd and that C is squarefree. Further, if
ab ≡ 1 (mod 2) and ord2(B) = 2, we suppose, again without loss of generality, that
c ≡ −bB/4 (mod 4).

Then, to a solution to (1), we associate a positive integer N , by

(2) N = Rad2(AB) Rad2(C)2 ε2,

where

ε2 =



1 if ord2(Bbn) = 6
2 if ord2(Bbn) ≥ 7
4 if ord2(B) = 2 and b ≡ −BC/4 (mod 4)
8 if ord2(B) = 2 and b ≡ BC/4 (mod 4), or if ord2(B) ∈ {4, 5}
32 if ord2(B) = 3 or if bBC is odd
128 if ord2(B) = 1
256 if C is even.

2.2. Signature (n, n, 3). If m = 3, we assume, without loss of generality, that
Aa 6≡ 0 (mod 3) and Bbn 6≡ 2 (mod 3). Further, suppose that C is cube free,
without loss of generality, that A and B are nth-power free and that equation (1)
does not correspond to one of the identities

(3) 1 · 25 + 27 · (−1)5 = 5 · 13 or 1 · 27 + 3 · (−1)7 = 1 · 53.

In this situation, we define N by

(4) N = Rad3(AB) Rad3(C)2 ε3,

where

ε3 =



1 if ord3(Bbn) = 3,

3 if ord3(Bbn) > 3,

9 if ord3(Bbn) = 2 or if 9|(2 + C2Bbn − 3Cc),
27 if 3‖(2 + C2Bbn − 3Cc) or if ord3(Bbn) = 1,

81 if 3|C.

2.3. Signature (n, n, n). Finally, if m = n, we define N by

(5) N = Rad2(ABC) εn,

where

εn =


1 if ord2(ABC) = 4,

2 if ord2(ABC) = 0 or if ord2(ABC) ≥ 5,

8 if ord2(ABC) = 2 or 3,

32 if ord2(ABC) = 1.
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3. The main result

Proposition 3.1. Suppose that a, b, c, A,B and C are nonzero integers with aA, bB
and cC pairwise coprime, ab 6= ±1, satisfying

Aan + Bbn = Ccm

with n ≥ 5 (for m ∈ {3, n}) or n ≥ 7 (if m = 2) where, in each case, n is prime.
Suppose further, that the equation does not correspond to (3). Then there exists a
cuspidal newform f =

∑∞
r=1 crq

r of weight 2, trivial Nebentypus character and level
N for N as given in (2) (if m = 2), (4) (if m = 3) or (5) (if m = n). Moreover,
if we write Kf for the field of definition of the Fourier coefficients cr of the form f
and suppose that p is a prime, coprime to nN , then

(6) NormKf /Q(cp − ap) ≡ 0 (mod n),

where ap = ±(p + 1) or ap ∈ Sp,m, with

Sp,2 = {x : |x| < 2
√

p, x ≡ 0 (mod 2)},

Sp,3 = {x : |x| < 2
√

p, x ≡ p + 1 (mod 3)}
and

Sp,n = {x : |x| < 2
√

p, x ≡ p + 1 (mod 4)}.

This combines work from [1], [2] and [13]. In the case of signature (n, n, 3), it is
a slightly less precise version of the analogous statement in [2].

4. Some useful propositions

In this section, we will collect a variety of results that enable us, under certain
assumptions, to deduce a contradiction from Proposition 3.1. They are as follows :

Proposition 4.1. There are no weight 2, level N cuspidal newforms with trivial
character for

N ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60}.

Proposition 4.2. Suppose that m = 2 or m = 3 and that n ≥ 5 (if m = 3) or
n ≥ 7 (if m = 2) where, in each case, n is prime. Then the form f can have CM
by an imaginary quadratic field K only if one of the following holds:

(a) ab = ±2r, r > 0, 2 6 |ABC, and 2 splits in K.
(b) n = 5, 7 or 13, n splits in K, and either the modular Jacobian J0(mn) has

no quotient of rank 0 over K, or ab = ±2r3s with s > 0 and 3 ramifies in
the field K.

Proposition 4.3. Suppose that m = 2 or m = 3 and that n ≥ 5 (if m = 3)
or n ≥ 7 (if m = 2) where, in each case, n is prime. Then the form f cannot
correspond to an elliptic curve E over Q for which the j-invariant j(E) is divisible
by any odd prime p 6= n dividing C.

These propositions are, essentially, available in [1], [2] and [13]. The reader is
directed to these papers and to the surveys [14] and [15] for detailed explanations
of the methods involved in their proofs.
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5. An example or two

In this section, we will indicate how the preceding propositions may be employed
to show that certain Diophantine equations lack “nontrivial” solutions. Let us begin
by showing that the equation

(7) xn + yn = 5z2

has no solutions in nonzero integers x, y, z, provided n ≥ 7 is prime (the cases
n = 4, 5, 6, 9 may be treated via different methods, such as those of Coleman-
Chabauty; see e.g [16]). Suppose that (a, b, c) is a solution to (7) with n ≥ 7
prime and abc 6= 0. We distinguish two cases, according to whether ab is even or
odd. In the first instance, we have N = 50. There are just two newforms of this
level, corresponding to elliptic curves over Q. Each of these forms has c3 = ±1,
contradicting (6) (since a3 ∈ {0,±2,±4}).

If ab is odd, then we have from (2) that N = 800. From Stein’s tables [18], we
find that there are 14 Galois conjugacy classes of forms at this level; we list some
Hecke eigenvalues for a number of these :

newform cp

800, 2 c3 = 1
800, 5 c3 = 1
800, 6 c3 = −1
800, 9 c3 = −1
800, 10 c3 = ±

√
5, c19 = ∓3

√
5

800, 11 c3 = 1±
√

5
800, 12 c3 = ±2

√
2

800, 13 c3 = ±
√

5, c19 = ±3
√

5
800, 14 c3 = −1±

√
5

Here, we refer to forms via Stein’s numbering system [18]. For the forms in the
above table, considering c3, congruence (6) contradicts n ≥ 7 prime, except possibly
for those forms in the classes 800,10 and 800,13. For such forms c3 = ±

√
5 and so,

from (6), n must divide one of −5,−1, 11. Since n ≥ 7 it must be that n = 11. For
these forms we also have c19 = ±3

√
5, whence, again by (6), 11 must divide one of

−45,−41,−29,−9, 36, 355. Since this fails to occur, none of the forms in the classes
800,10 and 800,13 can be the f whose existence is guaranteed by Proposition 3.1.

Next, we observe that the forms 800,3 and 800,7 correspond to isogeny classes
of elliptic curves having j-invariants

j = 438976/5 or − 64/25.

Proposition 4.3 implies that f is neither of these forms.
Finally, the forms 800,1, 800,4 and 800,8 each correspond to isogeny classes of

elliptic curves having complex multiplication by Q(
√
−1) (hence the corresponding

newforms have CM by Q(
√
−1)). Invoking Proposition 4.2, it follows that n = 7

or 13 and that n splits in Q(
√
−1). This implies that n = 13 and, since 3 does

not ramify in Q(
√
−1), contradicts the fact that J0(26) has a finite quotient over

Q(
√
−1) (see [1] for a proof of this fact).

As a second example, consider the (Thue) Diophantine equation

(8) xn − 3yn = 2.
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An obvious solution (for odd n) is with (x, y) = (−1,−1). Using the techniques
outlined here, we can show that, for odd n ≥ 3, there are, in fact, no other integral
solutions. For n = 3 or 5, this is a consequence of standard computational methods
for solving Thue equations. We thus suppose that n ≥ 7 is prime. We may also
assume that a putative solution (x, y) 6= (−1,−1) has both x and y odd. Writing
2 = 2 · 1m, we have three options available. If we suppose m = n, then N = 96.
There are two isogeny classes of elliptic curves over Q at this level, both with
full 2-torsion. We are thus unable to use our techniques to derive an immediate
contradiction. If we take m = 2, we find ourselves at level N = 768, where we
are again thwarted, this time by the eight isogeny classes of elliptic curves over
Q with conductor 768 and rational 2-torsion. If, however, we let m = 3, we find
ourselves at level N ∈ {4, 12, 36, 108}. By Proposition 4.1, we necessarily have
N = 36 or N = 108. In each case, there is precisely one Galois conjugacy class of
cupidal newform at level N , corresponding to elliptic curves with CM by Q(

√
−3).

Applying Proposition 4.2, since xy 6= ±2r3s and both J0(21) and J0(39) have finite
quotients over Q(

√
−3), we obtain the desired contradiction.
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